厘米-克-秒制

厘米-克-秒單位制厘米-克-秒系統(英文:centimetre-gram-second system,故常簡稱CGS制)是一種物理單位的系統制度,分別以厘米長度質量時間的基本單位。

在力學單位方面厘米-克-秒單位制是一致的,但在電學單位方面則有幾種變體。此單位系統後來被MKS取代,也就是米-千克-秒系統(meter-kilogram-second system),而其又被國際單位制(SI system)所取代;國際單位制具有MKS制的三個基本單位,再加上凱氏溫標安培燭光莫耳,有許多工程及科學領域只使用國際單位制,不過仍有一些領域常使用厘米-克-秒單位制。

在量測純力學系統時(即只和長度質量壓力能量等物理量有關的系統),厘米-克-秒制和國際單位制之間的轉換相當單純及明確。單位間的轉換係數均為10的次幂,均可由以下關係推導而成;100 cm = 1 m及1000 g = 1 kg。例如厘米-克-秒制下,力的單位為達因,等於1 g·cm/s2,國際單位制力的單位為牛頓,等於1 kg·m/s2,因此可以依上述關係推得1 達因=10−5 牛頓。

厘米-克-秒單位制下熱能的單位為卡路里,其定義為將1克的水由溫度15.5 °C變成16.5 °C所需的熱量。

但在量測有關電磁的系統時(例如和電荷電場磁場電壓等物理量有關的系統),厘米-克-秒制和國際單位制之間的轉換就相當的複雜。甚至電磁學定律(例如馬克士威方程組)的公式需要依所使用的單位加以調整。國際單位制的電磁學單位和厘米-克-秒制的對應單位之間沒有一一对应的關係。在厘米-克-秒制中,對應同一物理量(例如電流)有幾種不同的電磁學單位,因此產生了幾種厘米-克-秒制的變體,包括高斯單位制靜電單位制、電磁單位制及勞侖茲-黑維塞單位制等,後來最常用的是高斯單位制,有時仍會出現在技術文獻中,特別是在美國的電動力學天文學領域,因此常常用厘米-克-秒制代表高斯單位制。

歷史

此單位系統最先是由德國數學家卡爾·高斯於1832年所提案,並在1874年由於英國物理學家詹姆斯·馬克士威威廉·湯姆森加入了電磁學單位而延伸。厘米-克-秒單位制的尺度在實際應用上顯得過小而不方便,例如一般人的體重若用厘米-克-秒單位制表示時,需要用到5位數才能表示,因此很少用在電動力學以外的領域,並且自1880年代開始國際漸不採用,但直到20世紀中葉才由更實用的MKS制取代,隨後MKS制又轉化成現代通行的國際單位制

由於厘米-克-秒單位制逐漸的被MKS制及國際單位取代,在技術領域使用厘米-克-秒單位制的情形正逐漸減少。許多科學期刊或國際標準單位已不使用厘米-克-秒單位制,不過在天文學的期刊中仍會使用。美國的材料科學、電動力學及天文學中偶爾會使用厘米-克-秒單位制。由於MKS制(及國際單位制)的磁通量密度單位特斯拉太大,在日常使用上不便,一般會使用厘米-克-秒單位制的對應單位高斯,因此在磁學及其相關領域中仍會使用厘米-克-秒單位制。

厘米-克-秒單位制的基礎單位公克厘米雖不是國際單位制的基礎單位,仍被使用在一些簡單的,可在實驗桌上操作的物理及化學實驗中。不過在使用衍生單位時,只會使用國際單位,例如物理實驗室可能會用公克及厘米為質量及長度的單位,但力的單位(衍生單位)會使用國際單位制的單位牛頓,而不會使用厘米-克-秒單位制的單位達因。

厘米-克-秒制力學單位的定義

厘米-克-秒制及國際單位制用相同的方式定義力學的單位,二者的差異是使用不同的長度及質量基礎單位,厘米-克-秒制使用厘米和克為長度及質量基礎單位,國際單位制使用米和千克為基礎單位,厘米-克-秒制及國際單位制的時間基礎單位相同,都是秒。

厘米-克-秒制及國際單位制的力學單位之間有一對一的對應關係,力學定律的型式不會依使用的單位而改變。衍生單位是利用力學定律來定義,是三個基礎單位的組合,因此二種單位系統的衍生單位有明確的對應關係:

 速度的定義)
 牛頓第二運動定律
 能量定義為機械功的形式)
 壓強定義為單位面積的受力)
 黏度定義為單位速度梯度下的剪應力

例如厘米-克-秒制的壓強單位(Ba)和其基礎單位之的間關係,和國際單位制的壓強單位帕斯卡(Pa)和其基礎單位之間的關係完全相同:

1 單位壓強 = 1 單位力/(1 單位長度)2 = 1 單位質量/(1 單位長度·(1 單位時間)2)
1 Ba = 1 g/(cm·s2)
1 Pa = 1 kg/(m·s2).

若要將厘米-克-秒制的衍生單位以國際單位制的衍生單位表示,需要考慮二個單位制中基礎單位之間的係數,反之亦然。

1 Ba = 1 g/(cm·s2) = 10-3 kg/(10-2 m·s2) = 10-1 kg/(m·s2) = 10-1 Pa.

厘米-克-秒制力學單位的定義以及轉換係數

力學厘米-克-秒單位制
物理量 符號 單位定義SI單位制
長度 L, x厘米(cm)1 cm= 10−2 米(m)
質量 m(g)1 g= 10−3 千克(kg)
時間 t(s)1 s
速度 v厘米/秒(cm/s)1 cm/s10−2 米/秒
加速度 a(gal)1 cm/s²10−2 米/秒²
F達因(dyn)1 dyne = 1 g·cm/s²= 10−5 牛頓(N)
能量 E爾格(erg)1 erg = 1 g·cm²/s²= 10−7 焦耳(J)
功率 P爾格/秒(erg/s)1 erg/s = 1 g·cm²/s³= 10−7 瓦特(W)
壓力 p(Bar)1 Bar = 106 dyne/cm² = 106 g/(cm·s²)= 105 帕(Pa)
黏度 μ(P)1 P = 1 g/(cm·s)= 10−1 帕-秒(Pa·s)
動黏度 ν斯托克(St)1 St = 1 cm²/s= 10-4 米/秒
波數 k凱塞(kayser)1 kayser = cm−1= 100 米−1

厘米-克-秒制力學單位的定義以及轉換係數

力學厘米-克-秒單位制
物理量 符號 單位定義SI單位制
長度 L, x厘米(cm)1 cm= 10−2 米(m)
質量 m(g)1 g= 10−3 千克(kg)
時間 t(s)1 s
速度 v厘米/秒(cm/s)1 cm/s10−2 米/秒
加速度 a(gal)1 cm/s²10−2 米/秒²
F達因(dyn)1 dyne = 1 g·cm/s²= 10−5 牛頓(N)
能量 E爾格(erg)1 erg = 1 g·cm²/s²= 10−7 焦耳(J)
功率 P爾格/秒(erg/s)1 erg/s = 1 g·cm²/s³= 10−7 瓦特(W)
壓力 p(Bar)1 Bar = 106 dyne/cm² = 106 g/(cm·s²)= 105 帕(Pa)
黏度 μ(P)1 P = 1 g/(cm·s)= 10−1 帕-秒(Pa·s)
動黏度 ν斯托克(St)1 St = 1 cm²/s= 10-4 米/秒
波數 k凱塞(kayser)1 kayser = cm−1= 100 米−1

厘米-克-秒制對於電磁學單位的作法

厘米-克-秒制及國際單位制在電磁學的單位有很大的差異,厘米-克-秒制因為電磁學單位的不同,有不同的變體,甚至電磁學定律的形式也會隨使用單位制不同而不同,以下描述二者的基本差異:

  • 國際單位制中將電流的單位安培定義為基本單位,其定義為二條電流為1安培,距離為1米的平行無限長導線,其產生的作用力為2×10–7 N/m(此定義方式類似厘米-克-秒制中的電磁單位制,因此國際單位制和電磁單位制比較接近,許多單位的轉換係數都只是10的乘幂)。安培和米、千克及秒一樣都是基本單位,因此安培無法由米、千克及秒等基本單位組合而成。因此國際單位制的電磁學定律需要額外的常數(例如真空电容率)來將電磁學的單位轉換為力學單位,常數的大小和安培的定義方式有關。所有其他的電磁學單位都是由安培、米、千克及秒所組成的衍生單位,例如電荷q定義為電流I和時間t的乘積:
,
因此電荷的單位庫侖(C)定義為1 C = 1 A·s。
  • 厘米-克-秒制中的靜電單位制高斯單位制不為電學新增基本單位,因此所有的電磁學單位都是由厘米、克及秒組成的衍生單位,由電磁學和力學有關的定律推導而來。

厘米-克-秒制電磁學單位的推導方式

有許多方式可以推導電磁學的物理量及長度、時間及質量等單位之間的關係。其中有二種方式是以電荷的受力為主。有二個互相獨立的定律,分別描述電荷及其微分量(電流)和力之間的關係。二個定律可以寫成以下可通用於各單位制的形式

  • 第一個是库仑定律,描述二個距離為的電荷qq'之間的靜電力。此處的為常數,和電荷單位的定義方式有關。
  • 第二個是安培力定律,描述二個距離的無限長平行導線,導線直徑遠小於距離,其電流分別是II',單位長度導線所受到的電磁力。由於,常數的數值也和電荷單位的定義方式有關。

馬克士威電磁方程連結上述二個定律,根據麦克斯韦電磁方程,以上二個常數 需符合的關係,其中c真空中的光速。因此上述二個常數無法個別獨立調整。若根據库仑定律定義電荷的單位,令,則安培定律就會出現的係數。相對的,若利用安培力定律定義電流單位,令,同時也固定了库仑定律中的的係數。

在厘米-克-秒制的發展過程中分別有人使用上述二種不同的電荷單位衍生方式,因此產生了二種厘米-克-秒制的變體。不過還有其他方式可由長度、時間及質量推導電磁學的單位。例如利用以下二個磁場和其他力學物理量的公式,也可推導電磁學的單位:

  • 第一個定律描述磁場B對一個以速度v運動的電荷q產生的磁力:
  • 第二個定律為毕奥-萨伐尔定律,描述一個有限長度dl,上面有電流I的導線對於一個位置以向量r表示的一點產生的靜磁場B
其中r為向量r的長度及單位向量。

上述二定律可以推導安培力定律,而三個定律中的常數有以下的關係:。若利用安培力定律定義電荷,使得,很自然的可以令,利用上述二個定律定義磁場。否則,需要在上述二個定律中選擇一個較合適的定律來定義磁場的單位。

若需要描述在非真空介質下的電位移 D及磁場H,需要定義二個常數,分別是真空電容率ε0真空磁導率μ0。因此可得到以下的通式,其中PM分別是電極化強度磁化強度向量。而因子λ及λ′稱為有理化常數,是一個無因次量,一般會選為。若λ = λ′ = 1,此單位制稱為「有理化單位制」:關於球面的電磁方程式會含有4π,關於圓柱面的則含有2π,處理直導線或平行板的則完全不含π。不過原始的厘米-克-秒制是使用λ = λ′ = 4π,亦即。因此以下要介紹的高斯單位制、靜電單位制或靜磁單位制都不是有理化單位制。

厘米-克-秒制電磁學單位的變體

下表列出常用的厘米-克-秒制變體中,對應上述常數的值。

單位制
CGS靜電單位制
(ESU, esu, 或 stat-)
1c−21c−2c−21
CGS電磁單位制
(EMU, emu, 或 ab-)
c21c−2111
CGS高斯單位制1c−111c−2c−1
CGS勞侖茲-黑維塞單位制11c−111
國際單位制111

國際單位制中的常數b是一個單位轉換有關的常數,定義為:

有些書籍會使用以下名稱的常數

麦克斯韦方程组可以寫成以下可通用於各單位制的形式

在以上幾種單位制中,只有高斯單位制及勞侖茲-黑維塞單位制的等於而不是1。 因此真空中電磁波產生的向量場,以上述二種單位表示時有相同的單位。

靜電單位制(ESU)

靜電單位制(electrostatic units)簡稱ESU,是厘米-克-秒制的一種變體。靜電單位制的電荷是以電荷對其他電荷的施力來定義,而電流定義成電荷對時間的微分。靜電單位制的庫侖常數定義為1,因此靜電單位制下的庫侖定律中沒有出現比例量。

靜電單位制的電荷單位franklin (Fr),也稱為靜電庫侖(statcoulomb)、靜庫侖或esu電荷(esu charge),其定義如下:

二個電量相等、距離一厘米的電荷,若彼此間的作用力為一達因,則其電荷為一靜電庫侖

因此在靜電單位制中,一靜電庫侖等於厘米和達因平方根的乘積: