叉积

数学向量代数领域,外積英語:)又称向量积英語:),是对三维空间中的两个向量二元运算,使用符号 。与点积不同,它的运算结果是向量。对于线性无关的两个向量 ,它们的外积写作 ,是 所在平面的法线向量,与 垂直。外积被广泛运用于数学、物理工程学计算机科学领域。

如果两个向量方向相同或相反(即它们没有线性无关的分量),亦或任意一个的长度为零,那么它们的外积为零。推广开来,外积的模长和以这两个向量为边的平行四边形的面积相等;如果两个向量成直角,它们外积的模长即为两者长度的乘积。

外积和点积一样依赖于欧几里德空间度量,但与点积之不同的是,外积还依赖于定向右手定則

在右手坐标系中的向量积

定义

使用右手定則确定外积的方向

两个向量 的外积仅在三维空间中有定义,写作 。在物理学中,外积有时也被写成,但在数学中 外代数中的外积。

外积 是与 都垂直的向量 。其方向由右手定則决定,模长等于以两个向量为边的平行四边形的面积。

外积可以定义为:

其中 表示 在它们所定义的平面上的夹角)。 是向量 模长,而 则是一个与 所构成的平面垂直单位向量,方向由右手定則决定。根据上述公式,当 平行(即 为 0° 或 180°)时,它们的外积为零向量

外积a × b(垂直方向、紫色)随着向量 a(蓝色)和 b(红色)的夹角变化。 外积垂直于两个向量,模长在两者平行时为零、在两者垂直时达到最大值‖a‖‖b‖。

按照惯例,向量 的方向由右手定則决定:将右手食指指向 的方向、中指指向 的方向,则此时拇指的方向即为 的方向。使用这一定则意味着外积满足反交换律:将右手食指指向 、中指指向 ,那么拇指就必定指向相反方向,即翻转了外积的符号。

由此可以看出,使用外积需要考虑坐标系的利手性(英語:),如果使用的是左手坐标系,向量 的方向需要使用左手定则决定,与右手坐标系中的方向相反。

这样就会带来一个问题:参照系的变换不应该影响 的方向(例如从右手坐标系到左手坐标系的镜像变换)。因此,两个向量的外积并不是(真)向量,而是伪向量

计算

坐标表示

基向量ijk,也记作 e1e2e3)和向量 a 的分解(axayaz,也记作 a1a2a3)

右手坐标系中,基向量 满足以下等式:

根据反交换律可以得出:

根据外积的定义可以得出:

零向量)。

根据以上等式,结合外积的分配律线性关系,就可以确定任意向量的外积。

向量 可以定义为平行于基向量的三个正交元素之和:

两者的外积 可以根据分配律展开:

即把 分解为九个仅涉及 的简单外积之和。九个外积各自所涉及的向量,要么相互平行、要么相互正交。将最前面所述的几个等式带入其中,然后合并同类项,可以得到:

即结果向量 的三个标量元素为: