转动惯量
在经典力學中,轉動慣量又稱慣性矩(英語:),通常以 表示,國際單位制為
表示,國際單位制為 ·
· 。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。
。轉動慣量是一個物體對於其旋轉運動的慣性大小的量度。一個剛體對於某轉軸的轉動慣量決定對於這物體繞著這轉軸進行某種角加速度運動所需要施加的力矩。
| 轉動慣量 | 
|---|
| 常見符號 | I | 
|---|
| 國際單位 | kg m2 | 
|---|
| 其他單位 | lbf·ft·s2 | 
|---|
| 單位因次 | M L2 | 
|---|
| 從其他物理量的推衍 |  | 
|---|
| 因次 | M L2 | 
|---|

走钢丝者手里端着长杆,为了靠转动惯量保持平衡,对抗转动运动。圖為
撒姆爾·迪克森(Samuel Dixon)於1890年穿過尼加拉河的相片。
 轉動慣量在转动力学中的角色相當於線性動力學中的質量,描述角動量、角速度、力矩和角加速度等數個量之間的關係。
 
定义
對於一個質點, ,其中
,其中 是其質量,
是其質量, 是質點和轉軸的垂直距離。
是質點和轉軸的垂直距離。
對於一個有多個質點的系統, 。
。
对于剛體,可以用無限個質點的轉動慣量和,即用積分計算其轉動慣量, ,其中
,其中 是密度,
是密度, 是微量體積。
是微量體積。
 
相关概念
定轴转动动力学方程
在直線運動, 。在旋轉運動,則有
。在旋轉運動,則有 ,其中
,其中 是力矩,
是力矩, 是角加速度。
是角加速度。
 
定轴转动动能
一般物件的動能是 。將速度
。將速度 和質量
和質量 ,用轉動力學的定義取代:
,用轉動力學的定義取代:
 , ,
 
得出
 , ,
簡化得
 。 。
如果一個人坐在一張可轉動的椅子,雙手拿重物,張開雙手,轉動椅子,然後突然將手縮到胸前,轉動的速度將突然增加,因為轉動慣量減少了。
 
 
定轴转动动力学方程
在直線運動, 。在旋轉運動,則有
。在旋轉運動,則有 ,其中
,其中 是力矩,
是力矩, 是角加速度。
是角加速度。
 
定轴转动动能
一般物件的動能是 。將速度
。將速度 和質量
和質量 ,用轉動力學的定義取代:
,用轉動力學的定義取代:
 , ,
 
得出
 , ,
簡化得
 。 。
如果一個人坐在一張可轉動的椅子,雙手拿重物,張開雙手,轉動椅子,然後突然將手縮到胸前,轉動的速度將突然增加,因為轉動慣量減少了。
 
常用定理
平行軸定理
平行軸定理是說,如果一個質量為 的物件,以某條經過质心
的物件,以某條經過质心 點的直線為軸,其轉動慣量為
點的直線為軸,其轉動慣量為 。在空間取點
。在空間取點 ,使得
,使得 垂直於原本的軸。那麼如果以經過
垂直於原本的軸。那麼如果以經過 、平行於原本的軸的直線為軸,
、平行於原本的軸的直線為軸, 的距離為
的距離為 ,則
,則 。
。
 
垂直轴定理
垂直轴定理是说,如果一个平面物件,以该平面内两条互相垂直、交于 点的直线为轴,转动惯量分别为
点的直线为轴,转动惯量分别为 、
、 ,则它以过
,则它以过 点且垂直于该平面的直线为轴的转动惯量
点且垂直于该平面的直线为轴的转动惯量 。
。
 
伸展定则
伸展定则是说,如果一个物件中的任一质点沿平行于某条轴的方向发生任意位移,该物件对该轴的转动惯量不变。
 
 
平行軸定理
平行軸定理是說,如果一個質量為 的物件,以某條經過质心
的物件,以某條經過质心 點的直線為軸,其轉動慣量為
點的直線為軸,其轉動慣量為 。在空間取點
。在空間取點 ,使得
,使得 垂直於原本的軸。那麼如果以經過
垂直於原本的軸。那麼如果以經過 、平行於原本的軸的直線為軸,
、平行於原本的軸的直線為軸, 的距離為
的距離為 ,則
,則 。
。
 
垂直轴定理
垂直轴定理是说,如果一个平面物件,以该平面内两条互相垂直、交于 点的直线为轴,转动惯量分别为
点的直线为轴,转动惯量分别为 、
、 ,则它以过
,则它以过 点且垂直于该平面的直线为轴的转动惯量
点且垂直于该平面的直线为轴的转动惯量 。
。
 
伸展定则
伸展定则是说,如果一个物件中的任一质点沿平行于某条轴的方向发生任意位移,该物件对该轴的转动惯量不变。
 
慣性張量
對於三維空間中任意一参考點 與以此参考點為原點的直角坐標系
與以此参考點為原點的直角坐標系 ,一個剛體的慣性張量
,一個剛體的慣性張量 是
是
 。(1) 。(1)
這裏,矩陣的對角元素 、
、 、
、 分別為對於
分別為對於 -軸、
-軸、 -軸、
-軸、 -軸的轉動慣量。設定
-軸的轉動慣量。設定 為微小質量
為微小質量 對於點
對於點 的相對位置。則這些轉動慣量以方程式定義為
的相對位置。則這些轉動慣量以方程式定義為
 , ,
 ,(2) ,(2)
 。 。
矩陣的非對角元素,稱為慣量積,以方程式定義為
 , ,
 ,(3) ,(3)
 。 。
導引

圖A
如圖 ,一個剛體對於質心
,一個剛體對於質心 與以點
與以點 為原點的直角座標系
為原點的直角座標系 的角動量
的角動量 定義為
定義為
 。 。
這裏, 代表微小質量
代表微小質量 在
在 座標系的位置,
座標系的位置, 代表微小質量的速度。因為速度是角速度
代表微小質量的速度。因為速度是角速度 叉積位置,所以,
叉積位置,所以,
 。 。
計算 -軸分量,
-軸分量,
 
相似地計算 -軸與
-軸與 -軸分量,角動量為
-軸分量,角動量為
 , ,
 , ,
 。 。
如果,我們用方程式(1)設定對於質心 的慣性張量
的慣性張量 ,讓角速度
,讓角速度 為
為 ,那麼,
,那麼,
 。(4) 。(4)
 
平行軸定理
平行軸定理能夠很簡易的,從對於一個以質心為原點的座標系統的慣性張量,轉換至另外一個平行的座標系統。假若已知剛體對於質心 的慣性張量
的慣性張量 ,而質心
,而質心 的位置是
的位置是 ,則剛體對於原點
,則剛體對於原點 的慣性張量
的慣性張量 ,依照平行軸定理,可以表述為
,依照平行軸定理,可以表述為
 , ,
 ,(5) ,(5)
 , ,
 , ,
 ,(6) ,(6)
 。 。
證明:

圖B
a)參考圖B,讓 、
、 分別為微小質量
分別為微小質量 對質心
對質心 與原點
與原點 的相對位置:
的相對位置:
 , , 。 。
依照方程式(2),
 
 。 。
所以,
 
相似地,可以求得 、
、 的方程式。
的方程式。
b)依照方程式(3),
 。 。
 。 。
因為 ,
, ,所以
,所以
 
相似地,可以求得對於點 的其他慣量積方程式。
的其他慣量積方程式。
 
對於任意軸的轉動慣量

圖C
參視圖C,設定點 為直角座標系的原點,點
為直角座標系的原點,點 為三維空間裏任意一點,
為三維空間裏任意一點, 不等於
不等於 。思考一個剛體,對於
。思考一個剛體,對於 -軸的轉動慣量是
-軸的轉動慣量是
 。 。
這裏, 是微小質量
是微小質量 離
離 -軸的垂直距離,
-軸的垂直距離, 是沿著
是沿著 -軸的單位向量,
-軸的單位向量, 是微小質量
是微小質量 的位置。
的位置。
展開叉積,
 。 。
稍微加以編排,
 
特別注意,從方程式(2)、(3),這些積分項目,分別是剛體對於 -軸、
-軸、 -軸、
-軸、 -軸的轉動慣量與慣量積。因此,
-軸的轉動慣量與慣量積。因此,
 。(7) 。(7)
如果已經知道,剛體對於直角座標系的三個座標軸, -軸、
-軸、 -軸、
-軸、 -軸的轉動慣量。那麼,對於
-軸的轉動慣量。那麼,對於 -軸的轉動慣量,可以用此方程式求得。
-軸的轉動慣量,可以用此方程式求得。
 
主轉動慣量
因為慣性張量 是個實值的三維對稱矩陣,我們可以用對角線化,將慣量積變為零,使慣性張量成為一個對角矩陣。所得到的三個特徵值必是正實值;三個特徵向量必定互相正交。
是個實值的三維對稱矩陣,我們可以用對角線化,將慣量積變為零,使慣性張量成為一個對角矩陣。所得到的三個特徵值必是正實值;三個特徵向量必定互相正交。
換另外一種方法,我們需要解析特徵方程式
 。(8) 。(8)
也就是以下行列式等於零的的三次方程式:
 。 。
這方程式的三個根 、
、 、
、 都是正實的特徵值。將特徵值代入方程式(8),再加上方向餘弦方程式,
都是正實的特徵值。將特徵值代入方程式(8),再加上方向餘弦方程式,
 , ,
我們可以求到特徵向量 、
、 、
、 。這些特徵向量都是剛體的慣量主軸;而這些特徵值則分別是剛體對於慣量主軸的主轉動慣量。
。這些特徵向量都是剛體的慣量主軸;而這些特徵值則分別是剛體對於慣量主軸的主轉動慣量。
假設 -軸、
-軸、 -軸、
-軸、 -軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為
-軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為 、
、 、
、 ,角速度是
,角速度是 。那麼,角動量為
。那麼,角動量為
 。 。
 
動能
剛體的動能 可以定義為
可以定義為
 , ,
這裏, 是剛體質心的速度,
是剛體質心的速度, 是微小質量
是微小質量 相對於質心的速度。在方程式裏,等號右邊第一個項目是剛體平移運動的動能,第二個項目是剛體旋轉運動的動能
相對於質心的速度。在方程式裏,等號右邊第一個項目是剛體平移運動的動能,第二個項目是剛體旋轉運動的動能 。由於這旋轉運動是繞著質心轉動的,
。由於這旋轉運動是繞著質心轉動的,
 。 。
這裏, 是微小質量
是微小質量 繞著質心的角速度,
繞著質心的角速度, 是
是 對於質心的相對位置。
對於質心的相對位置。
應用向量恆等式,可以得到
 。 。
或者,用矩陣來表達,
 。 。
所以,剛體的動能為
 。(9) 。(9)
假設 -軸、
-軸、 -軸、
-軸、 -軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為
-軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為 、
、 、
、 ,角速度是
,角速度是 。那麼,剛體的動能為
。那麼,剛體的動能為
 。(10) 。(10)
 
 
導引

圖A
如圖 ,一個剛體對於質心
,一個剛體對於質心 與以點
與以點 為原點的直角座標系
為原點的直角座標系 的角動量
的角動量 定義為
定義為
 。 。
這裏, 代表微小質量
代表微小質量 在
在 座標系的位置,
座標系的位置, 代表微小質量的速度。因為速度是角速度
代表微小質量的速度。因為速度是角速度 叉積位置,所以,
叉積位置,所以,
 。 。
計算 -軸分量,
-軸分量,
 
相似地計算 -軸與
-軸與 -軸分量,角動量為
-軸分量,角動量為
 , ,
 , ,
 。 。
如果,我們用方程式(1)設定對於質心 的慣性張量
的慣性張量 ,讓角速度
,讓角速度 為
為 ,那麼,
,那麼,
 。(4) 。(4)
 
平行軸定理
平行軸定理能夠很簡易的,從對於一個以質心為原點的座標系統的慣性張量,轉換至另外一個平行的座標系統。假若已知剛體對於質心 的慣性張量
的慣性張量 ,而質心
,而質心 的位置是
的位置是 ,則剛體對於原點
,則剛體對於原點 的慣性張量
的慣性張量 ,依照平行軸定理,可以表述為
,依照平行軸定理,可以表述為
 , ,
 ,(5) ,(5)
 , ,
 , ,
 ,(6) ,(6)
 。 。
證明:

圖B
a)參考圖B,讓 、
、 分別為微小質量
分別為微小質量 對質心
對質心 與原點
與原點 的相對位置:
的相對位置:
 , , 。 。
依照方程式(2),
 
 。 。
所以,
 
相似地,可以求得 、
、 的方程式。
的方程式。
b)依照方程式(3),
 。 。
 。 。
因為 ,
, ,所以
,所以
 
相似地,可以求得對於點 的其他慣量積方程式。
的其他慣量積方程式。
 
對於任意軸的轉動慣量

圖C
參視圖C,設定點 為直角座標系的原點,點
為直角座標系的原點,點 為三維空間裏任意一點,
為三維空間裏任意一點, 不等於
不等於 。思考一個剛體,對於
。思考一個剛體,對於 -軸的轉動慣量是
-軸的轉動慣量是
 。 。
這裏, 是微小質量
是微小質量 離
離 -軸的垂直距離,
-軸的垂直距離, 是沿著
是沿著 -軸的單位向量,
-軸的單位向量, 是微小質量
是微小質量 的位置。
的位置。
展開叉積,
 。 。
稍微加以編排,
 
特別注意,從方程式(2)、(3),這些積分項目,分別是剛體對於 -軸、
-軸、 -軸、
-軸、 -軸的轉動慣量與慣量積。因此,
-軸的轉動慣量與慣量積。因此,
 。(7) 。(7)
如果已經知道,剛體對於直角座標系的三個座標軸, -軸、
-軸、 -軸、
-軸、 -軸的轉動慣量。那麼,對於
-軸的轉動慣量。那麼,對於 -軸的轉動慣量,可以用此方程式求得。
-軸的轉動慣量,可以用此方程式求得。
 
主轉動慣量
因為慣性張量 是個實值的三維對稱矩陣,我們可以用對角線化,將慣量積變為零,使慣性張量成為一個對角矩陣。所得到的三個特徵值必是正實值;三個特徵向量必定互相正交。
是個實值的三維對稱矩陣,我們可以用對角線化,將慣量積變為零,使慣性張量成為一個對角矩陣。所得到的三個特徵值必是正實值;三個特徵向量必定互相正交。
換另外一種方法,我們需要解析特徵方程式
 。(8) 。(8)
也就是以下行列式等於零的的三次方程式:
 。 。
這方程式的三個根 、
、 、
、 都是正實的特徵值。將特徵值代入方程式(8),再加上方向餘弦方程式,
都是正實的特徵值。將特徵值代入方程式(8),再加上方向餘弦方程式,
 , ,
我們可以求到特徵向量 、
、 、
、 。這些特徵向量都是剛體的慣量主軸;而這些特徵值則分別是剛體對於慣量主軸的主轉動慣量。
。這些特徵向量都是剛體的慣量主軸;而這些特徵值則分別是剛體對於慣量主軸的主轉動慣量。
假設 -軸、
-軸、 -軸、
-軸、 -軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為
-軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為 、
、 、
、 ,角速度是
,角速度是 。那麼,角動量為
。那麼,角動量為
 。 。
 
動能
剛體的動能 可以定義為
可以定義為
 , ,
這裏, 是剛體質心的速度,
是剛體質心的速度, 是微小質量
是微小質量 相對於質心的速度。在方程式裏,等號右邊第一個項目是剛體平移運動的動能,第二個項目是剛體旋轉運動的動能
相對於質心的速度。在方程式裏,等號右邊第一個項目是剛體平移運動的動能,第二個項目是剛體旋轉運動的動能 。由於這旋轉運動是繞著質心轉動的,
。由於這旋轉運動是繞著質心轉動的,
 。 。
這裏, 是微小質量
是微小質量 繞著質心的角速度,
繞著質心的角速度, 是
是 對於質心的相對位置。
對於質心的相對位置。
應用向量恆等式,可以得到
 。 。
或者,用矩陣來表達,
 。 。
所以,剛體的動能為
 。(9) 。(9)
假設 -軸、
-軸、 -軸、
-軸、 -軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為
-軸分別為一個剛體的慣量主軸,這剛體的主轉動慣量分別為 、
、 、
、 ,角速度是
,角速度是 。那麼,剛體的動能為
。那麼,剛體的動能為
 。(10) 。(10)
 
計算範例

細長棒子的轉动惯量是


當自轉軸移到末端,轉动惯量是

利用線密度 可輕易計算出細長棒子沿質心(CM)自轉的转动惯量。
可輕易計算出細長棒子沿質心(CM)自轉的转动惯量。
 
 
 
當自轉軸移到末端,轉动惯量變成:
 
 
 
相關條目
 
參考文獻
-  普通物理学(修订版,化学数学专业用)。汪昭义主编。华东师范大学出版社.P81.三、转动惯量.ISBN 978-7-5617-0444-8/N·018
-  O'Nan, Michael. . USA: Harcourt Brace Jovanovich, Inc. 1971: pp。361. ISBN 0-15-518558-6 (英语).
- Beer, Ferdinand; E. Russell Johnston, Jr., William E. Clausen (2004). Vector Mechanics for Engineers. 7th edition. USA: McGraw-Hill, ISBN 978-0-07-230492-3
 
外部連結