福克-普朗克方程

福克-普朗克方程Fokker–Planck equation)描述粒子在位能場中受到隨機力後,隨時間演化的位置或是速度分布函數 。此方程式以荷蘭物理學家阿德曆安·福克馬克斯·普朗克的姓氏來命名。

存在拖曳和扩散项时,福克-普朗克方程的一个一维解。初始状态为远离零速度的δ函数,随机冲击使其分布逐渐变宽

一維 x方向上,福克-普朗克方程有兩個參數,一是拖曳參數 D1(x,t),另一是擴散 D2(x,t)

維空間中的福克-普朗克方程是

是第維度的位置,此時 為拖曳向量擴散張量

其他

若V=0,则福克-普朗克方程成为布朗运动

與隨機方程式的關係

福克-普朗克方程可以用來計算隨機過程隨機微分方程式分布函數的解。

一個受隨機力的古典粒子,經由朗之萬方程式可以得到福克-普朗克方程。另外再藉由福克-普朗克方程也可推導薛丁格方程式

參考資料

  1. Leo P. Kadanoff. . World Scientific. 2000. ISBN 9810237642.
  2. A. D. Fokker, Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld, Ann. Phys. 348 (4. Folge 43), 810–820 (1914).
  3. M. Planck, Sitz.ber. Preuß. Akad. (1917).
  4. Edward Nelson ,"Derivation of the Schrödinger Equation from Newtonian Mechanics",Phys. Rev. 150, 1079–1085 (1966)

相關條目

延伸閱讀

  • Hannes Risken, "The Fokker–Planck equation : Methods of Solutions and Applications", 2nd edition, Springer Series in Synergetics, Springer, ISBN 3-540-61530-X.
  • David Tong. Kinetic Theory. Ch. 3. https://www.damtp.cam.ac.uk/user/tong/kinetic.html
  • Scott. Applied Stochastic Processes.

外部連結

本文来源:维基百科:福克-普朗克方程

本篇内容的全部文字在知识共享 署名-相同方式共享 3.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款

︿
︿