原子轨道线性组合
基本计算过程
假设分子系统的哈密顿量为
,其定态薛定谔方程为
。
其中
为分子轨道(分子波函数),
分子体系的能量。
LCAO的基本思想就是用原子轨道
的线性组合来表示分子轨道
:

将其代入到定态薛定谔方程中,



所得到的线性方程组系统为久期方程。注意,在LCAO中,
,这是因为这里的
代表的不再是同一原子的波函数,而是处于不同位置的原子的波函数,它们一般不满足正交归一性。
与原子间的位置相关,原子间相距近,则波函数间交叠大;若原子相距很远,
则趋于零,因此
被称作重叠积分(overlap integral)。
记双原子分子中两个原子的波函数分别为
与
,根据LCAO,分子波函数可以写作线性组合:

代入到定态薛定谔方程
中,

分别用两个原子波函数与上式做内积,


展开,


因此得到,


相应的久期方程矩阵形式为

线性组合的系数由此可求得。
双原子分子体系的能量
可由两个方程之比求得,

最简单的分子: H
H
是由两个质子与一个电子组成的同核双原子分子,是最简单的分子形式。设想H
的分子轨道可以由两个氢原子的基态波函数1s线性叠加而成。此时满足
,其中α为库仑积分,β为交换积分,S为重叠积分。于是,代入用于求能量的比值式:

可得到两个可能的能量值;回代入久期方程,可得到系数
与
的关系。
,此时有
,此时有
因此,令
,可得到两个分子轨道


c可由归一化条件最终确定。
已知氢原子基态波函数(1s)在空间中表示为
,考虑二维情况
,设一个处于
处的氢原子基态波函数为
,另一个处于
处的氢原子基态波函数为
,对波函数按上面得到的分子轨道表达式进行线性叠加可得,



H2+分子的成键轨道

的几率分布示意图

H2+分子的反键轨道

的几率分布示意图
最简单的分子: H
H
是由两个质子与一个电子组成的同核双原子分子,是最简单的分子形式。设想H
的分子轨道可以由两个氢原子的基态波函数1s线性叠加而成。此时满足
,其中α为库仑积分,β为交换积分,S为重叠积分。于是,代入用于求能量的比值式:

可得到两个可能的能量值;回代入久期方程,可得到系数
与
的关系。
,此时有
,此时有
因此,令
,可得到两个分子轨道


c可由归一化条件最终确定。
已知氢原子基态波函数(1s)在空间中表示为
,考虑二维情况
,设一个处于
处的氢原子基态波函数为
,另一个处于
处的氢原子基态波函数为
,对波函数按上面得到的分子轨道表达式进行线性叠加可得,



H2+分子的成键轨道

的几率分布示意图

H2+分子的反键轨道

的几率分布示意图